AI + DIGITAL INNOVATION IN HEALTHCARE

Elizabeth A. Krupinski, PhD FSIIM, FSPIE, FATA, FAIMBE, FAUR Department Radiology & Imaging Sciences Emory University Arizona Telemedicine Program Southwest Telehealth Resource Center

AI – Health Technology Disrupter

- Al predictive analytics in US health systems
 - 64% have dedicated team or individual responsible for AI algorithms
 - Most common sepsis ID & hospital readmission risk prediction
 - ~Half built their own AI predictive algorithms
 - Commercial vendors increasingly being used
- Goals
 - Reduce variability
 - Improve outcomes
 - Reduce burnout
 - Address provider shortages
 - Reduce errors
 - Improve workflow (triaging, billing etc.)
 - Reduce costs

Rojas, J. C., Rohweder, G., Guptill, J., Arora, V. M. & Umscheid, C. A. Predictive Analytics Programs at Large Healthcare Systems in the USA: a National Survey. J. Gen. Intern. Med. https://doi.org/10.1007/s11606-022-07517-1 (2022).

Prediction Models

- Statistical based logistic regression models, decision tree models etc.
 - Gail Model Breast Cancer Risk
 - Sepsis
 - Adverse drug events
 - Patient decompensation
- Moving to SVM, ML, DL
 - Uses more variables
 - More personally tailored
 - More accurate?
 - Widely used AI to detect sepsis only IDed 7% of 2552 patients with sepsis resulting in delayed antibiotic administration & failure ID 1709 patients with sepsis that hospital identified through other means

year old woman	year old woman		
5-year breast cancer risk	Lifetime breast cancer risk		
1.7%	7.4%		
	Asian-American		
	Hispanic		
	African-American		
Race/ethnicity	White		
Previous breast biopsy	Unknown 0	1	>1
First-degree relatives with breast cancer Include only mother, sisters and daughters	Unknown 0	1	>1
	≥30 years old		
	25-29 years old		
	20-24 years old		
	<20 years old		
	No births		
First live birth	Unknown		
	>13 years old		
	12-13 years old		
	7-11 years old		
First menstrual period	Unknown		
Valid for women 35-85 years old.	63		years

Ambient Clinical Intelligence

- Advanced, voice-enabled AI: automatically document patient encounters & free-flowing conversation between physician, patients & families
- Give patient full attention & ACI creates complete, accurate clinical notes directly in EHR to review & sign
- Additional tech can analyze, predict, place orders etc.
- Reduce provider burnout, reduce errors

Embodied Al

- Robots, virtual assistants, other intelligent systems
- Sensors import data from surroundings that AI systems analyze & learn from interactively until goal reached
- Develops abstract representation & understanding spatial &/or temporal dimensions world to solve complex tasks

AI EMR

Predictive analyses

Data visualization

NLP

Security & privacy

Pre-existing condition mapping

+

 \cap

Prognosis & diagnosis

Data fetching from wearables

Data normalization (interoperability)

Patient matching (wrong patient)

Automatic reminders (no shows, FU)

HIE

Billing accuracy

Triaging IP vs TM

BIOMARKERS

i over two miniori people.

Ki-67 image

Mindpeak AI algorithms

The Surprising Career of the Spirometer

from Plantation to Genetics

LUNDY BRAUN

> Am J Respir Crit Care Med. 2023 Apr 15;207(8):978-995. doi: 10.1164/rccm.202302-0310ST.

Race and Ethnicity in Pulmonary Function Test Interpretation: An Official American Thoracic Society Statement

Nirav R Bhakta, Christian Bime, David A Kaminsky, Meredith C McCormack, Neeta Thakur, Sanja Stanojevic, Aaron D Baugh, Lundy Braun, Stephanie Lovinsky-Desir, Rosemary Adamson, Jonathan Witonsky, Robert A Wise, Sean D Levy, Robert Brown, Erick Forno, Robyn T Cohen, Meshell Johnson, John Balmes, Yolanda Mageto, Cathryn T Lee, Refiloe Masekela, Daniel J Weiner, Charlie G Irvin, Erik R Swenson, Margaret Rosenfeld, Richard M Schwartzstein, Anurag Agrawal, Enid Neptune, Juan P Wisnivesky, Victor E Ortega, Peter Burney

> N Engl J Med. 2020 Aug 27;383(9):874-882. doi: 10.1056/NEJMms2004740. Epub 2020 Jun 17.

Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms

Darshali A Vyas¹, Leo G Eisenstein¹, David S Jones¹

Lancet Digit Health. 2022 Jun;4(6):e406-e414. doi: 10.1016/S2589-7500(22)00063-2.
 Epub 2022 May 11.

AI recognition of patient race in medical imaging: a modelling st Leo Anthony Celi⁵, Li-Saptarshi Purkayastha⁴ Laleh Seyyed-Kalantari Modelling st Leo Anthony Celi⁵, Li-Saptarshi Purkayastha⁴ Laleh Seyyed-Kalantari Mon Baneriee¹ Kamanasish Bhattachariee² John J. Burns³ Hari Trivedi⁴

dkar 7 ,

Editorial > Radiology. 2023 Nov;309(2):e232666. doi: 10.1148/radiol.232666.

Racial Bias Exacerbated through AI: An Example Using Chest Radiograph Models

Boris Nikolic¹

Type 1 Thinking

- Fast
- Subconscious
- Automatic
- Everyday decisions
- Error prone

Type 2 Thinking

- Slow
- Conscious
- Effortful
- Complex decisions
- Reliable

THE COGNITIVE BIAS CODEX

Visual illusion

Brain activity

Challenges

- Where to apply effectively
 - Lack internal expertise
 - Lack understanding compliance & regulatory
 - User trust
- Hallucinations
- ROI & \$\$ for implementation/infrastructure
- Ethical (fairness, bias) & legal (privacy, security, data & IP/ownership)
- Lack quality data
- Clinically irrelevant performance metrics
- Methodological research flaws
- Transparency & explainability
- Skill gaps
- Deskilling

What's Needed?

- Safe & effective AI in clinical settings requires consideration health care workforce, existing technologies, policies, & processes
- Aviation & defense developed framework human-systems integration

 to effectively & safely integrate machines into work environment –
 should leverage
- ONC funded EHR implementation guides called Safety Assurance Factors for EHR Resilience (SAFER) guides – can serve as model for embedding AI in EHR
- FDA should consider guidelines to support safe use AI-enabled medical devices
- Address tendency people overly trust AI, algorithm drift that results in variation in AI performance in different settings, & health care professional complacency

- Processes monitor AI-related patient safety issues use test cases that represent organization's patients to assess AI for safety issues & for commercial AI developer should provide standardized set test cases all organizations can apply to implemented AI system with opportunity local customization to represent patient population differences
- Appropriate governance structures to address adding new AI tools, frequency monitoring to ID patient safety issues, development solutions
 Joint Commission should consider basic accreditation standards
- If AI system may have contributed to patient harm thorough review required to examine how AI may have been involved - AI systems should capture core set metadata to support review, analysis & traceability of how AI was operating at time incident
- Traceability also addresses AI bias leading to inequitable patient outcomes
- Use sensitive personal data for analysis (& development) may require patient consent & robust security measures to protect sensitive information

ekrupin@emory.edu @EAKrup